Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1539298 | Optics Communications | 2009 | 12 Pages |
Abstract
An image blind reconstruction, as a blind source separation problem, has been solved recently by independent component analysis (ICA). Based on ICA theory, in this paper, a high resolution image is reconstructed from low resolution and subpixel shifted sequences captured by infrared microscan imaging system. The algorithm has the attractive feature that neither the prior knowledge of the blur kernel nor the value of subpixel misregistrations between the input channels is required. The statistical independence in the image domain is improved by the multiscale Gabor subband decompositions, which are designed for the best ability to cover the whole spatial frequency and to avoid overlapping between the subbands. The mutual information is employed to locate a subband with the least dependent components. In terms of MAP estimator, we combine the super-Gaussian with Markov random field to form a hybrid image distribution. This strategy helps to estimate the separating matrix reasonable to extract the sources with the image properties, that is, sharp enough as well as correlative in local area. The proposed algorithm is capable of performing high resolution image sources which are not strictly independent, and its viability is proved by the computer simulations and real experiments.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Chen Yi-nan, Jin Wei-qi, Wang Ling-Xue, Zhao Lei, Yu Hong-sheng,