Article ID Journal Published Year Pages File Type
1539642 Optics Communications 2009 6 Pages PDF
Abstract

A numerical study of second harmonic generation (SHG) in one-dimensional nonlinear photonic crystals based on full nonlinear system of equations, implemented by a combination of the method of finite elements and fixed-point iterations, is reported. This model is derived from a nonlinear system of Maxwell’s equations, which partly overcomes the known shortcoming of some existing models relied on the undepleted-pump approximation. We derive a general solution of SHG in one-dimensional nonlinear photonic crystals structures. The convergence of our method is fast. Numerical simulations also show the conversion efficiency of SHG can be significantly enhanced when the frequencies of the fundamental wave are located at the photonic band edges or are assigned to the designed defect states.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
,