Article ID Journal Published Year Pages File Type
1539724 Optics Communications 2010 9 Pages PDF
Abstract
The propagation of four-petal Gaussian beams in strongly nonlocal nonlinear media has been studied. The analytical solution and the analytical second-order moment beam width are obtained. For the off-waist incident and the waist incident cases, the intensity pattern evolves periodically during propagation in strongly nonlocal nonlinear media. Under the off-waist incident condition, the second-order moment beam width varies periodically during propagation, whatever the input power is. But under the waist incident condition, there exists a critical power. When the input power equals the critical power, the second-order moment beam width remains invariant, otherwise the second-order moment beam width varies periodically. Numerical simulations based on the nonlocal nonlinear Schrödinger equation are carried out for comparison with the theoretical predictions. The results show that the numerical simulations are in good agreement with the analytical results in the case of strong nonlocality.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,