Article ID Journal Published Year Pages File Type
1539755 Optics Communications 2008 7 Pages PDF
Abstract
We experimentally study both reshaping of nonreturn-to-zero (NRZ) signal and NRZ to pseudoreturn-to-zero (PRZ) format conversion based on self-phase modulation of a semiconductor optical amplifier (SOA) and detuning an optical bandpass filter (OBF). When an OBF with 1 nm bandwidth is blue shifted by 0.8 nm, the distortion of the amplified NRZ signal at 10 Gbit/s is shown to be eliminated completely. When an OBF with 0.32 nm bandwidth is red shifted by 0.42 nm from the carrier frequency, NRZ-to-PRZ conversion at 10 Gbit/s is obtained. A holding beam is used to suppress the SOA noise and improve the output extinction ratio (ER). The output ER of both the reshaped NRZ and the converted PRZ is larger than 10 dB when the signal wavelength is longer than 1540 nm, and an input power dynamic range from −7 dBm to 2 dBm is obtained at a signal wavelength of 1563.6 nm. The average power of the reshaped NRZ signal is about 3 dBm at an input power dynamic range of 13 dB. The amplitude fluctuation of the converted PRZ signal is around 1.6 dB.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,