Article ID Journal Published Year Pages File Type
1539817 Optics Communications 2008 6 Pages PDF
Abstract
Influenced by detector materials' non-uniformity, growth and etching techniques, etc., every detector's responsivity of infrared focal plane arrays (IRFPA) is different, which results in non-uniformity of IRFPA. And non-uniformity of IRFPA generates fixed pattern noises (FPN) that are superposed on infrared image. And it may degrade the infrared image quality, which greatly limits the application of IRFPA. Non-uniformity correction (NUC) is an important technique for IRFPA. The traditional non-uniformity correction algorithm based on neural network and its modified algorithms are analyzed in this paper. And a new improved non-uniformity correction algorithm based on neural network is proposed in this paper. In this algorithm, the desired image is estimated by using three successive images in an infrared sequence. And blurring effect caused by motion is avoided by applying implicit motion detection and edge detection. So the estimation image is closer to real image than the estimation image estimated by other algorithms, which results in fast convergence speed of correction parameters. A comparison is made to these algorithms in this paper. And experimental results show that the algorithm proposed in this paper can correct the non-uniformity of IRFPA effectively and it prevails over other algorithms based on neural network.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,