Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1539951 | Optics Communications | 2009 | 5 Pages |
The average fluorescence wavelength of the laser crystal is the most important factor in the radiation-balanced laser (RBL). Polarized fluorescence spectra measurements of the anisotropic laser material ytterbium-doped potassium gadolinium tungstate, Yb3+:KGd(WO4)2, are carried out along principal refractive index directions m, p, g in three configurations in order to achieve the best design for RBL. The average fluorescence wavelength of g polarization is the shortest, so g should be in the face of fluorescence emission; m polarization should be normal to that face to avoid its strong absorption to fluorescence photons. Fluorescence re-absorption causes the average fluorescence wavelength of the directly measured spectra red-shifted at least 9 nm. Methods for depressing radiation trapping are suggested accordingly, which are high power pumping, low doping concentration, small dimensions and fusing with undoped KGd(WO4)2.