Article ID Journal Published Year Pages File Type
1539958 Optics Communications 2009 6 Pages PDF
Abstract

A novel plasmonic nanolens formed by a tapered subwavelength metal slit surrounded by surface dielectric gratings is proposed and demonstrated numerically. By patterning surface corrugations on the output surface, the beam can be focused, by regulating the aperture, the focal length can be controlled effectively. Numerical simulations using Finite-Difference Time-Domain (FDTD) method coupled with anisotropic perfectly matched layer (APML) boundary conditions verify that the proposed metallic lens can focus the radiation on the scale of a wavelength below the substrate and the method is effective for the design of nano-optical devices such as optical microprobes.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,