Article ID Journal Published Year Pages File Type
1540308 Optics Communications 2009 7 Pages PDF
Abstract

We propose and experimentally demonstrate a novel fiber-optic edge filter based on modulating the chirp rate of a π-phase-shifted fiber Bragg grating (FBG) operating in transmission mode. The phase shift induced passband in the transmission spectrum is utilized as the edge filter. The dependence of the π-phase-shifted FBG’s transmitted spectral response on the chirp rate has been numerically studied in detail and experimentally confirmed, to the best of our knowledge, for the first time. The linear wavelength range of the proposed edge filter can be tuned by changing the chirp rate of FBG. The edge filter is further tested as a wavelength interrogator, and the experimental results are in good agreement with numerical results. The proposed fiber-optic edge filter has several unique advantages which include simple structure, cost effectiveness, high sensitivity, flexible tunability, and optical circulator is not required, and thus has interesting potential applications, especially as a wavelength interrogator in FBG foot sensors, FBG ultrasound and vibration sensors, and FBG distributed sensors, where the required wavelength ranges are very small (<0.4 nm).

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,