Article ID Journal Published Year Pages File Type
1540331 Optics Communications 2009 5 Pages PDF
Abstract

An adaptive optics system for the retina imaging is introduced in the paper. It can be applied to the eye with myopia from 0 to 6 diopters without any adjustment of the system. A high-resolution liquid crystal on silicon (LCOS) device is used as the wave-front corrector. The aberration is detected by a Shack–Harmann wave-front sensor (HASO) that has a Root Mean Square (RMS) measurement accuracy of λ/100 (λ = 0.633 μm). And an equivalent scale model eye is constructed with a short focal length lens (∼18 mm) and a diffuse reflection object (paper screen) as the retina. By changing the distance between the paper screen and the lens, we simulate the eye with larger diopters than 5 and the depth of field. The RMS value both before and after correction is obtained by the wave-front sensor. After correction, the system reaches the diffraction-limited resolution approximately 230 cycles/mm at the object space. It is proved that if the myopia is smaller than 6 diopters and the depth of field is between −40 and +50 mm, the system can correct the aberration very well.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,