Article ID Journal Published Year Pages File Type
1540484 Optics Communications 2008 5 Pages PDF
Abstract

An experimental and theoretical study on the optically stimulated spin transport in zinc-blende semiconductors is presented. The first part of the paper describes an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers induced by a circularly polarized light. Since the photo-generated hole spins relaxation is extremely fast, the experiment observes only the effect resulting from spin-polarized electrons accumulating at the transverse edges of the sample, as a result of left-right asymmetries in scattering for spin-up and spin-down electrons in the presence of spin–orbit (SO) interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are discussed. The second part of the paper deals with a theoretical investigation using norm-conserving pseudopotential and Green function formalism to analyse the SO mechanism responsible for the light-induced Hall voltage. The findings resulting from the investigation are discussed and are compared with experimental data.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,