Article ID Journal Published Year Pages File Type
1540523 Optics Communications 2008 4 Pages PDF
Abstract

Unslanted diffraction gratings are recorded in a 900 μm thick acrylamide photopolymer by means of peristrophic multiplexing. A solid state Nd:YAG (λ = 532 nm) laser is used as the recording beam, with a total incident intensity of 5 mW/cm2, and a He–Ne laser as the reconstruction beam. The dye concentration in the photopolymer is optimized so that it does not limit the dynamic range. Nine holograms are recorded using constant exposure time scheduling and variable exposure time scheduling. From the results obtained it may be deduced that optimization of the dye allows us to work in the linear response region of the photopolymer and at the same time obtain high values of diffraction efficiency for each hologram. An exponential increase in exposure time as the number of holograms increases enables the values of diffraction efficiency to be homogenized with regard to the case of constant exposure scheduling. In this way, better use is made of the dynamic range of acrylamide hydrophilic photopolymer.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,