Article ID Journal Published Year Pages File Type
1540674 Optics Communications 2008 5 Pages PDF
Abstract
We suggest a simple and high efficient method for trapping particles in the evanescent field. In this method, a single plane wave is normally incident on the cylindrical surface of a cylindrical lens and then incident on the plane surface of the lens at an angle larger than the critical angle. Multiple reflections of light within the cylindrical lens create two evanescent waves with different directions in the transmitted field. Interference of two evanescent waves comes into being a standing wave which can stably trap particles close to the top of the cylindrical lens. Based on the Rayleigh approximation, we obtain analytical expressions of optical force acting on a Rayleigh particle placed in the vicinity of the lens. We find that the trap stiffness and trap depth is dependent on the radius of the cylindrical lens, wavelength and polarization of light, and incident angle at the lens-liquid interface.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,