Article ID Journal Published Year Pages File Type
1540826 Optics Communications 2009 10 Pages PDF
Abstract

We demonstrate the feasibility of a compact single-shot full-field time domain optical coherence tomography (OCT) for imaging dynamic biological sample in real-time. The system is based on a Linnik type polarization Michelson interferometer and a four-quadrature phase-stepper optics, which can simultaneously capture four quadraturely phase-stepped interferograms on a single CCD. Using a superluminescent diode as light source with center wavelength of 842 nm and spectral width of 16.2 nm, the system yields an axial resolution of 19.8 μm, and covers a field of view of 280 × 320 μm2 (220 × 250 pixels) with a transverse resolution of 4.4 μm by using a 10× microscope objective (0.3 NA). Three-dimensional OCT images of biological samples such as an onion slice and a diaptomus were obtained without any image averaging or pixel binning. In addition, in vivo depth resolved dynamic imaging was demonstrated to show the beating internal structure of a diaptomus with a fame rate of 5 fps.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,