Article ID Journal Published Year Pages File Type
1541035 Optics Communications 2008 14 Pages PDF
Abstract

Properties of vortex light beams produced by a diffraction grating with groove bifurcation (“fork” structure) are studied in the case of small diffraction angles. Analytical expressions are derived for the amplitude distribution of a diffracted beam generated from an incident Gaussian beam with arbitrary radius and wavefront curvature, transversely shifted and inclined with respect to the nominal axis (normal to the grating crossing it at the bifurcation point). In such situations, the output beam becomes asymmetric; the optical vortex core and the intensity maximum displace orthogonally to the incident beam shift direction. The nearest vicinity of the vortex core preserves its circular symmetry and the optical vortex remains locally isotropic. The effects of misalignment depend on the incident beam characteristics, the diffraction order and the propagation distance behind the grating. Experimental measurements support the results of calculations.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,