Article ID Journal Published Year Pages File Type
1541151 Optics Communications 2008 8 Pages PDF
Abstract

In this work, a optical-fiber air-backed mandrel hydrophone is proposed and investigated both analytically and experimentally. The two-dimensional and three-dimensional quasistatically theoretical models of the hydrophone is created and compared, and the phase sensitivity of the hydrophone is analyzed. The theoretical result of phase sensitivity with three-dimensional model is −153.3 dB re rad/μPa. Twenty-two hydrophones of this type according to the model presented are constructed and tested. The experiment results show that experimental results of mean values of phase sensitivity are about −153 ± 0.5 dB re rad/μPa and have the close agreement with the estimation of theoretical models. The size of the fiber sensor is ∅12 × 55 mm, the normal phase sensitivity achieves −308 dB re 1 μPa−1, the 3 dB effective bandwidth of the frequency response is 30 kHz, and the responsivity decreases less than 0.5 dB when static pressure is 2 MPa (200 m water depth). The hydrophone is easy to constructed at low cost with simple structure, and some new type of it with the required performances could be designed according to the model presented.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,