Article ID Journal Published Year Pages File Type
1541984 Optics Communications 2007 7 Pages PDF
Abstract
An optical fiber-wireless system operating in millimeter-wave (MMW) bands may include numerous optical remote access points (RAPs) of which the cost is critical to implement such systems in real market. In this paper, we design an optical fiber communication system for MMW optical fiber downlink transmission with remote MMW local-oscillator (LO) delivery for intermediate frequency (IF) fiber uplink transmission. The new design is based on two dual-electrode Mach-Zehnder modulators in parallel both configured for optical single-sideband modulations. By using the proposed design, a conventional RAP can be simplified in structure to reduce the cost. Our numerical results show that, with the proposed design, 1-Gbit/s binary-phase-shift-keying (BPSK) data at a 42-GHz sub-carrier frequency can be transmitted over a 20-km standard single-mode optical fiber followed by a wireless transmission of several kilometers. Moreover, a MMW LO at 37-GHz frequency can be remotely delivered over tens of kilometers of a standard single-mode fiber with acceptable deterioration in the LO phase noise for IF uplink fiber transmission.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,