Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1542488 | Optics Communications | 2006 | 6 Pages |
We investigate entanglement of electrons and positrons produced via absorption by a vacuum of two or several photons from two external electromagnetic waves. The waves are modelled by finite-length focused pulses. Structures of the arising electron and positron wave packets are investigated in the momentum and coordinate representations. Conditional and unconditional widths of these wave packets, as well as the Schmidt number K are found, and they are used to evaluate the degree of entanglement. The conditions are found when entanglement is large. It is shown that the highest entanglement can be reached at nonrelativistic energies of electrons and positrons. Possibilities of observing the entanglement effects in experiments on pair production are discussed.