Article ID Journal Published Year Pages File Type
1542566 Optics Communications 2006 9 Pages PDF
Abstract

A generalized higher-order nonlinear-Schrödinger model of the transmission of subpicosend optical pulses in dispersion-decreasing fibers, with variable coefficients of the second- and third-order dispersion, nonlinearity, self-steepening, intra-pulse stimulated Raman scattering, and gain or loss, is considered. Imposing generalized Hirota conditions on the variable coefficients, we obtain exact solutions for a soliton sitting on top of a continuous-wave (CW) background by means of the Darboux transform. In the general form, the same solution provides for an exact description of the development of the modulational instability of a CW state, initiated by an infinitesimal periodic perturbation and leading to formation of a periodic array of solitons with a residual CW background. To obtain a more practically relevant solution for a soliton array without the CW component, we subtract it from the exact solution, and use the result as an initial approximation, to generate solutions in direct simulations. As a result, we obtain robust pulse trains, which are stable against arbitrary perturbations, as well as against violations of the Hirota conditions that were imposed to generate the initial exact solution.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,