Article ID Journal Published Year Pages File Type
1542753 Optics Communications 2006 7 Pages PDF
Abstract

Bichromatic and trichromatic manipulation of spontaneous emission in a three-level system in Λ configuration is studied on the basis of density matrix equation and quantum regression theorem. The spontaneous emission spectrum is numerically calculated by using harmonic expansion and matrix inversion. Two characteristic features are shown. Firstly, the central resonance peak, which is absent in the case of monochromatic excitation, is recovered for the bichromatic or trichromatic excitation. Secondly, selective elimination of the spectral lines is obtained by varying the amplitudes and phases of the trichromatic components. For the phase dependence, it is the sum of the relative phases of the two sideband components to the central component that plays a crucial role. The spontaneous emission spectrum is drastically modified once the sum phase is changed, but is kept unchanged regardless of the respective phases when the sum phase is fixed.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,