Article ID Journal Published Year Pages File Type
1542810 Optics Communications 2006 5 Pages PDF
Abstract

The propagation of electromagnetic energy via coupled surface plasmon polariton modes in a metal–insulator–metal heterostructure is analyzed analytically for a core material exhibiting optical gain. It is shown that a sufficiently large gain can completely compensate for the absorption losses due to energy dissipation in the metallic boundaries, enabling long-range transport with a confinement below the diffraction limit for on-chip switching and sensing applications. For a free-space wavelength of 1500 nm, lossless propagation in a gold–semiconductor–gold waveguide with a core size of 50 nm is predicted for a gain coefficient γ = 4830 cm−1, comparable to that of semiconductor gain media. The gain requirements decrease with the use of low-index nanocrystal-doped glasses or polymers as core materials.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
,