Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1542877 | Optics Communications | 2006 | 8 Pages |
Abstract
In this work, we consider the exact solution of the stationary cubic nonlinear equation in a semi-infinite nonlinear medium in contact with a one-dimensional photonic crystal. Two kinds of analytical solutions are found for an arbitrary magnitude of the nonlinearity: a standing-wave-like one containing the inverse elliptic function Eli(쉣m), and a one-wave-type solution for transmitted TE-polarized waves. An approximate two-wave solution is proposed to describe the field propagation through the nonlinear film covering the photonic crystal. It is shown that the problem of a mixed linear-nonlinear structure may be reduced to a transcendental kernel equation determining the field inside the nonlinear part of the medium. The light reflection from a Si/SiO2 layered structure in contact with an optically nonlinear medium is calculated. The angular-frequency photonic band diagram and power dependency are investigated. Local interface waveguide modes are considered.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
E.Ya. Glushko,