Article ID Journal Published Year Pages File Type
1543110 Photonics and Nanostructures - Fundamentals and Applications 2014 9 Pages PDF
Abstract

Efficient design of optoelectronic devices based on electron intersubband transitions depends critically on the knowledge of the intersubband relaxation times which in turn, depends on electron scattering with LO and acoustic phonons. In this article the intersubband scattering time associated with electron–acoustic-phonon interaction has been discussed in terms of phonon mode quantization and phonon confinement with describing the acoustic phonon dispersion relation in detail by introducing the cut-off frequency for each mode. It has been shown that the quantization of acoustic phonon modes lead to an enhancement in electron–phonon scattering time in AlGaAs quantum well structures. Based on the presented model, a new tailoring method has presented to adjust the electron–phonon scattering time in intersubband-transition-based structures while keeping the electronic properties unaltered. Also, we illustrated that for a quantum well with subband energy separation of ∼30 meV, the intersubband scattering time with acoustic-phonon-assisted transitions could be tailored from ∼120 ps to increased value of ∼400 ps or reduced value of ∼45 ps by inserting a 1 nm-thickacoustically soft or hard layers, respectively, while keeping the same the initial energy separation.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,