Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1543119 | Photonics and Nanostructures - Fundamentals and Applications | 2007 | 10 Pages |
Design, structure growth, fabrication, and characterization of high performance AlGaN-based metal–semiconductor–metal (MSM) photodetectors (PD) are reported. By incorporating AlN nucleation and buffer layers, the leakage current density of GaN MSM PD was reduced to 1.96 × 10−10 A/cm2 at a 50 V bias, which is four orders of magnitude lower compared to control devices. A 229 nm cut-off wavelength, a peak responsivity of 0.53 A/W at 222 nm, and seven orders of magnitude visible rejection was obtained from Al0.75Ga0.25N MSM PD. Two-color monolithic AlGaN MSM PD with excellent dark current characteristics were demonstrated, where both detectors reject the other detector spectral band with more than three orders of magnitude. High-speed measurements of Al0.38Ga0.62N MSM PD resulted in fast responses with greater than gigahertz bandwidths, where the fastest devices had a 3-dB bandwidth of 5.4 GHz.