Article ID Journal Published Year Pages File Type
1543294 Photonics and Nanostructures - Fundamentals and Applications 2013 12 Pages PDF
Abstract
During the last ten years, the discontinuous Galerkin time-domain (DGTD) method has progressively emerged as a viable alternative to well established finite-difference time-domain (FDTD) and finite-element time-domain (FETD) methods for the numerical simulation of electromagnetic wave propagation problems in the time-domain. In this paper, we review the historical development of the DGTD method and emphasize its recent adoption by the nanophotonic research community. In addition, we discuss about some of our recent efforts aiming at improving the accuracy, flexibility and efficiency of a non-dissipative order DGTD method, and also report on some preliminary works towards its extension to the numerical treatment of physical models and problems that are relevant to nanophotonics.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,