Article ID Journal Published Year Pages File Type
1543438 Photonics and Nanostructures - Fundamentals and Applications 2009 7 Pages PDF
Abstract

Quantum dots in photonic crystals are interesting both as a testbed for fundamental cavity quantum electrodynamics (QED) experiments and as a platform for quantum and classical information processing. We describe a technique to coherently access the QD-cavity system by resonant light scattering. Among other things, the coherent access enables a giant optical nonlinearity associated with the saturation of a single quantum dot strongly coupled to a photonic crystal cavity. We explore this nonlinearity to implement controlled phase and amplitude modulation between two modes of light at the single photon level—a nonlinearity observed so far only in atomic physics systems. We also measured the photon statistics of the reflected beam at various detunings with the QD/cavity system. These measurements reveal effects such as photon blockade and photon-induced tunneling, for the first time in solid state. These demonstrations lie at the core of a number of proposals for quantum information processing, and could also be employed to build novel devices, such as optical switches controlled at the single photon level.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,