Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1543531 | Physica E: Low-dimensional Systems and Nanostructures | 2016 | 6 Pages |
•We synthesized nanoscaled Bi2Te3 with narrow distribution and uniform dispersion.•The composite film exhibits a low modulation depth and large saturation intensity.
In order to increase metallic state of surface and elevate dispersion of Bi2Te3 nanoparticles, we synthesized nanoscaled Bi2Te3 with a size of 91.4±2.2 nm via a hydrothermal method. Bi2Te3 nanoparticles exhibit narrow distribution in size and uniform dispersion in several solvents, such as ethanol and polymethyl methacrylate (PMMA) solution. A Bi2Te3/PMMA flexible composite film was fabricated to further guarantee the uniformity of dispersion during the application. An open-aperture Z-scan technique was utilized to verify saturable absorption response of the Bi2Te3/PMMA composite film under 130 fs pulse at a wavelength of 800 nm. The nonlinear absorption coefficient ββ was fitted to be ~10−11m/W, and the value of ββ slightly increased as the incident laser strengthened. A modulation depth of 15.1% and a saturation intensity of 18.9 GW/cm2 for the composite film were also calculated. Our investigation suggests that the nanoscaled Bi2Te3/PMMA composite film could potentially be applied in large-energy laser pulses due to its high saturable intensity, and which might enlarge the application range of topological insulator (TI) materials.