Article ID Journal Published Year Pages File Type
1543535 Physica E: Low-dimensional Systems and Nanostructures 2016 6 Pages PDF
Abstract

We present first principles study of thermoelectric transport properties of sandwiched heterostructure of Graphene (G)/hexagonal Boron Nitride (BN)/G, based on Boltzmann transport theory for band electrons using the bandstructure calculated from the Density Functional Theory (DFT) based plane-wave method. Calculations were carried out for three, four and five BN layers sandwiched between Graphene layers with three different arrangements to obtain the Seebeck coefficient and Power factor in T∼25–400K range. Moreover, using Molecular Dynamics (MD) simulations with very large simulation cell we obtained the thermal conductance (K) of these heterostructures and obtained finally the Figure-of-Merit (ZT). These results are in agreement with recently reported experimental measurements.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,