Article ID Journal Published Year Pages File Type
1544159 Physica E: Low-dimensional Systems and Nanostructures 2015 8 Pages PDF
Abstract

A four level inverted Y-type quantum well semiconductor is proposed based on phase-sensitive Kerr nonlinearity with a closed-loop configuration. It is found that as the Rabi-frequency of coupling field increases, the maximal Kerr nonlinearity intensifies and at the same time the probe linear and nonlinear absorption decreases at Telecom wavelength λ=1550nm. The impact of an incoherent pumping field as well as the relative phase of the applied fields on nonlinear optical properties of the QW medium is then discussed. The temporal behavior of the Kerr nonlinearity and the required switching time for switching the nonlinear dispersion are also discussed. The results may be useful for understanding the switching feature of EIT-based slow light Kerr nonlinearity enhancement systems and have potential application in optical information processing and transmission.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,