Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1545301 | Physica E: Low-dimensional Systems and Nanostructures | 2011 | 4 Pages |
Abstract
We investigate atomic and electronic structures and energetics of the pyridine-type defects in the nitrogen-doped carbon nanotubes (CNTs) using first-principles density-functional calculations. To discuss the stability of pyridine-type configurations, we calculate the total energies of the possible nitrogen formations in the nitrogen-doped (10,0) CNT. From the results of total-energy calculations, it is found that the pyridine-type defects in the nitrogen-doped (10,0) CNT is energetically preferred to the substitutional nitrogen defects under the existence of the vacancy in the nanotube. We also discuss the impurity states induced by the pyridine-type configurations in the nitrogen-doped nanotube.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Yoshitaka Fujimoto, Susumu Saito,