Article ID Journal Published Year Pages File Type
1545507 Physica E: Low-dimensional Systems and Nanostructures 2010 6 Pages PDF
Abstract
Using non-equilibrium molecular dynamics methods, the analysis of geometry and temperature dependent thermal conductivities of diamond nanowires is carried out. It is found that at the same temperature conditions, thermal conductivities of diamond nanowires increase with increasing lengths, ranging from 20 to 350 nm and cross-sectional areas ranging from 2 to 30 nm2. At the same length, temperature and cross-sectional area conditions, thermal conductivities of 〈0 1 1〉 crystal orientation diamond nanowires are larger than those of other crystal orientation diamond nanowires. First, in the temperature range 0-1000 K, thermal conductivities of diamond nanowires increase with the increase in temperature, and then they decrease. The results of our calculation have also indicated that all thermal conductivities of the diamond nanowires analyzed here are smaller than those of the corresponding orientations in bulk diamond. Finally, a relationship between thermal conductivity and density of phonon state is discussed.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,