Article ID Journal Published Year Pages File Type
1545552 Physica E: Low-dimensional Systems and Nanostructures 2010 8 Pages PDF
Abstract

This paper presents an investigation on the longitudinal vibration of a double-nanorod-system (DNRS). The double-nanorod-systems are important in nanooptomechanical systems (NOMS). For the development of the governing equations, Eringen’s nonlocal elasticity is utilized. It is assumed that the two nanorods of the DNRS are coupled by longitudinally directed distributed springs. An analytical method is developed for solving the nonlocal frequencies of longitudinally vibrating DNRS. Clamped–clamped and clamped–free boundary conditions are employed and their explicit relationships are derived. Numerical studies are carried out for coupled double-carbon-nanotube-rod system. This study highlights that the nonlocal effect considerably influences the axial vibration of DNRS. The results obtained in this paper can be useful for the study of axially vibrating complex multiple-nanobeam system in NOMS.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,