Article ID Journal Published Year Pages File Type
1546062 Physica E: Low-dimensional Systems and Nanostructures 2009 4 Pages PDF
Abstract

Here, we demonstrate the low-temperature (480–612 °C) synthesis of carbon nanotubes (CNTs) on different metallic underlayers (i.e., NiV, Ir, Ag, Pt, W, and Ta) using diffusion (dc) plasma-enhanced (~20 W, −600 V) chemical vapour deposition (DPECVD). The catalyst used is bi-layered Fe/Al and the feedstock used is a mixture of C2H2 and NH3 (1:4). The crucial component is the diffusion of radical ions and hydrogen generated such as H2/H+/H2+/NH3+/CH2+/C2H2+ (which are confirmed by in-situ mass spectroscopy) from the nozzle, where it is inserted for most effective plasma diffusion between a substrate and a gas distributor.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,