Article ID Journal Published Year Pages File Type
1546227 Physica E: Low-dimensional Systems and Nanostructures 2010 9 Pages PDF
Abstract

Nonlinear free vibration of single-walled carbon nanotubes (SWCNTs) is studied in this paper based on von Kármán geometric nonlinearity and Eringen's nonlocal elasticity theory. The SWCNTs are modeled as nanobeams where the effects of transverse shear deformation and rotary inertia are considered within the framework of Timoshenko beam theory. The governing equations and boundary conditions are derived by using the Hamilton's principle. The differential quadrature (DQ) method is employed to discretize the nonlinear governing equations which are then solved by a direct iterative method to obtain the nonlinear vibration frequencies of SWCNTs with different boundary conditions. Zigzag (5, 0), (8, 0), (9, 0) and (11, 0) SWCNTs are considered in numerical calculations and the elastic modulus is obtained through molecular mechanics (MM) simulation. A detailed parametric study is conducted to study the influences of nonlocal parameter, length and radius of the SWCNTs and end supports on the nonlinear free vibration characteristics of SWCNTs.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,