Article ID Journal Published Year Pages File Type
1546536 Physica E: Low-dimensional Systems and Nanostructures 2009 5 Pages PDF
Abstract

In this work, we analyzed the effect of the catalyst metals with various forms on the thermal-oxidative stability of single-walled carbon nanotubes (SWCNTs) by using thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and electronic dispersive X-ray spectroscopy (EDX). The results indicate that the catalyst metal nanoparticles encapsulated inside multi-shelled graphite particles play a main role on destabilizing SWCNTs during their air oxidation. We also compared the thermal stability of SWCNTs in the cloth-like soot and the cotton-like soot produced by arc-discharge. The SWCNTs in the cotton-like soot are of higher thermal-oxidation stability than that in the cloth-like soot due to fewer multi-shelled graphite nanoparticles encapsulating metal nanoparticles.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,