Article ID Journal Published Year Pages File Type
1546697 Physica E: Low-dimensional Systems and Nanostructures 2008 6 Pages PDF
Abstract

Single gold nanowires with diameters ranging between 80 and 300 nm were fabricated by electrochemical deposition in single-pore membranes. The wires were contacted by means of a macroscopic planar electrode on each membrane side. The resistance-versus-diameter behavior was measured and is discussed considering finite-size effects, i.e., additional electron scattering both at the wire surface and at grain boundaries. Resistance-versus-temperature curves display characteristics like a bulk metal that shows a linear behavior down to about 70 K and finally approaches a limited value below 40–50 K with a residual resistivity ratio ρ300 K/ρ20 K≈2.5. The temperature-dependent resistivity data of wires with diameters larger than 200 nm fit well with the model of Mayadas and Shatzkes for grain-boundary scattering, thus confirming that surface scattering is negligible in this range.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,