Article ID Journal Published Year Pages File Type
1546758 Physica E: Low-dimensional Systems and Nanostructures 2008 4 Pages PDF
Abstract

We study the evolution with magnetic field of the single-particle energy levels high up in the energy spectrum of one dot as probed by the ground state of the adjacent dot in a weakly coupled vertical quantum dot molecule. We find that the observed spectrum is generally well accounted for by the calculated spectrum for a two-dimensional elliptical parabolic confining potential, except in several regions where two or more single-particle levels approach each other. We focus on two two-level crossing regions which show unexpected anti-crossing behaviour and contrasting current dependences. Within a simple coherent level mixing picture, we can model the current carried through the coupled states of the probed dot provided the intrinsic variation with magnetic field of the current through the states (as if they were uncoupled) is accounted for by an appropriate interpolation scheme.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , ,