Article ID Journal Published Year Pages File Type
1546891 Physica E: Low-dimensional Systems and Nanostructures 2008 5 Pages PDF
Abstract

The large electron mobility at room temperature and the absence of Schottky barrier to metals make InAs two-dimensional electron gas (2DEG) a good candidate for SPIN-FET (FET—field-effect-transistor) applications. So far the growth was done either on the InAlAs epilayers compositionally matched to InP substrates, or on Sb-based compound semiconductors. Here we aim to grow InAs 2DEG on GaAs substrates by using a strain-relaxing buffer layer. We introduce In0.4Al0.6As glue layer to the metamorphic structure and investigate the physical properties of InAlAs/InGaAs multi-quantum-well (MQW) structures via X-ray diffraction, transmission electron microscopy, and photoluminescence. We find that the use of As dimer instead of tetramer and the choice of proper growth temperature are essential for successful growth. InAs-inserted-channel InAlAs/InGaAs inverted high-electron-mobility transistor (HEMT) structures show promising results for SPIN-FET application.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,