Article ID Journal Published Year Pages File Type
1546988 Physica E: Low-dimensional Systems and Nanostructures 2010 4 Pages PDF
Abstract

We report the unexpected temperature dependence of electron tunneling from the two-dimensional electron gas (2DEG) to the Si-dot in a Si-dots floating gate metal-oxide-semiconductor (MOS) capacitor. We indicate that this temperature dependence of the electron tunneling cannot be explained by the conventional one-dimensional tunneling model, and show that it is necessary for a new model which includes the geometrical factor of the system. To extract a mechanism of the electron injection process from the 2DEG to the nano-structure, we have employed the numerical simulation, which includes both the geometrical condition of the system and the experimental setup. We suggest in our new tunneling model that the main contribution to the electron tunneling is induced by the wave-packet-like state of the electron below the Si-dots. We successfully show that the temperature dependence of the electron injection voltage in the Si-dots floating gate MOS capacitor fits our model. This indicates that the spatial distribution of electron density in the two-dimensional electron gas would play a crucial role in the electron tunneling.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , , ,