Article ID Journal Published Year Pages File Type
1547534 Physica E: Low-dimensional Systems and Nanostructures 2006 4 Pages PDF
Abstract
We report on low-temperature thermopower measurements of interacting GaAs bilayer hole systems in the limit of no interlayer tunneling. These systems exhibit a reentrant insulating phase near the many-body quantum Hall state (QHS) at total filling factor ν=1, when both layers have the same density. The diffusion thermopower is expected to diverge as T-1 in the presence of an energy gap (Wigner crystal) or to vanish in the case of a disordered induced mobility gap. Our results show that, as the temperature is decreased, the diffusion thermopower exhibits a T-1 dependence in the insulating phase around ν=1. This behavior clearly indicates the opening of an energy gap at low temperature, in agreement with the formation of a pinned Wigner solid. Finally, we report on the T-dependence of the thermopower at ν=1.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , ,