Article ID Journal Published Year Pages File Type
1547692 Physica E: Low-dimensional Systems and Nanostructures 2007 4 Pages PDF
Abstract

Structural and optical properties of Si/SiO2 multi-quantum wells (MQW) were investigated by means of Raman scattering and photoluminescence (PL) spectroscopy. The MQW structures were fabricated on a quartz substrate by remote plasma enhanced chemical vapour deposition (RPECVD) of alternating amorphous Si and SiO2 layers. After layer deposition the samples were subjected to heat treatments, i.e. rapid thermal annealing (RTA) and furnace annealing. Distinct PL signatures of confined carriers evidenced formation of Si-nanocrystals (nc-Si) in annealed samples. Analyses of Raman spectra also show presence of nc-Si phase along with amorphous-Si (a-Si) phase in the samples. The strong influence of the annealing parameters on the formation of nc-Si phase suggests broad possibilities in engineering MQW with various optical properties. Interestingly, conversion of the a-Si phase to the nc-Si phase saturates after certain time of furnace annealing. On the other hand, thinner Si layers showed a disproportionately lower crystalline volume fraction. From the obtained results we could assume that an interface strain prevents full crystallization of the Si layers and that the strain is larger for thinner Si layers. The anomalous dependence of nc-Si Raman scattering peak position on deposited layer thickness observed in our experiments also supports the above assumption.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,