Article ID Journal Published Year Pages File Type
1547932 Physica E: Low-dimensional Systems and Nanostructures 2006 4 Pages PDF
Abstract

We have found that the photoluminescence (PL) intensity of CdSe/ZnS nanocrystals placed on a thin film of insulator (GaAsOx/GaAs) depends on excitation wavelength through the interference effects of the excitation light. By employing the multi-reflection/interference calculation, the insulator thickness of the underlying non-uniform patterns can be evaluated by the simple observation of CdSe/ZnS PL with a couple of excitation wavelengths. Moreover, the differences observed for the temporal evolution of CdSe/ZnS PL (blue shifts and degradation) among the excitation wavelengths suggest that the photo-induced changes of chemical composition and surface ligands are responsible for blue shifts and degradation, respectively.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,