Article ID Journal Published Year Pages File Type
1548205 Progress in Natural Science: Materials International 2015 5 Pages PDF
Abstract

Series of (Ag)x/(Cu0.5Tl0.5Ba2Ca2Cu3O10-δ) {(Ag)x/CuTl-1223} nano-superconductor composites were synthesized with different concentrations (i.e. x=0~4.0 wt%) of silver (Ag) nanoparticles. Low anisotropic CuTl-1223 superconducting matrix was prepared by solid-state reaction and Ag nanoparticles were prepared by a sol–gel method separately. The required (Ag)x/CuTl-1223 composition was obtained by the inclusion of Ag nanoparticles in CuTl-1223 superconducting matrix. Structural, morphological, compositional and superconducting transport properties of these composites were investigated in detail by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) spectroscopy and four-point probe electrical resistivity (ρ) measurements. The inclusion of Ag nanoparticles enhanced the superconducting properties without affecting the tetragonal structure of the host CuTl-1223 matrix. The improvement in superconducting properties of (Ag)x/CuTl-1223 composites is most likely due to enhanced inter-grains coupling and increased superconducting volume fraction after the addition of metallic Ag nanoparticles at the inter-crystallite sites in the samples. The presence of Ag nanoparticles at the grain-boundaries may increase the number of flux pinning centers, which were present in the form of weak-links in the pure CuTl-1223 superconducting matrix.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,