Article ID Journal Published Year Pages File Type
1548387 Progress in Natural Science: Materials International 2009 9 Pages PDF
Abstract

Due to the difficulty in spinal cord regeneration with biological methods, the microelectronic neural bridge, a new concept based on microelectronic technology, is presented. The microelectronic system has been realized in the forms of hybrid and integrated circuits. The integrated circuits for neural signal detection, stimulation, and regeneration are realized in a CMOS process. In animal experiments with 100 toads, 48 rats, and 3 rabbits, nerve signals have been successfully detected from spinal cords and sciatic nerves, and functional electrical stimulation has been carried out for spinal cords and sciatic nerves. When the microelectronic system is bridged between the controlling and stimulated nerve, the relevant motion of legs and nerve signal waveforms, which are stimulated by the evoked or spontaneous nerve signal through such a system, have been observed. Therefore, the feasibility of the presented method was demonstrated.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , , , , , , , , , , ,