Article ID Journal Published Year Pages File Type
1548803 Progress in Natural Science: Materials International 2009 6 Pages PDF
Abstract

The propagation of shear horizontal (SH) guided waves in a coupled plate consisting of a piezoelectric layer and a piezomagnetic layer is studied. Both the layers are transversely isotropic and perfectly bonded along the interface. The upper and the lower surfaces of the plate are assumed to be mechanically free, electrically open and magnetically closed. Two different cases are considered. One is that the bulk shear wave velocity of piezoelectric material is larger than that of piezomagnetic material. The other is that the bulk shear wave velocity of piezomagnetic material is larger than that of piezoelectric material. The dispersion relation is obtained while the phase velocity is among the bulk shear wave velocity of two different layers. The numerical results show that the phase velocity approaches the smaller bulk shear wave velocity of the material in the system with the increase in the wave number for different modes. The thickness ratio and the properties of the piezoelectric material have great effect on the dispersion behaviors. The results of this paper can offer some fundamental theory to the application of piezoelectric/piezomagnetic composites or structures.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,