Article ID Journal Published Year Pages File Type
1548834 Progress in Natural Science: Materials International 2008 5 Pages PDF
Abstract

Particle swarm optimization is a stochastic global optimization algorithm that is based on swarm intelligence. Because of its excellent performance, particle swarm optimization is introduced into fuzzy entropy image segmentation to select the optimal fuzzy parameter combination and fuzzy threshold adaptively. In this study, the particles in the swarm are constructed and the swarm search strategy is proposed to meet the needs of the segmentation application. Then fuzzy entropy image segmentation based on particle swarm optimization is implemented and the proposed method obtains satisfactory results in the segmentation experiments. Compared with the exhaustive search method, particle swarm optimization can give the same optimal fuzzy parameter combination and fuzzy threshold while needing less search time in the segmentation experiments and also has good search stability in the repeated experiments. Therefore, fuzzy entropy image segmentation based on particle swarm optimization is an efficient and promising segmentation method.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,