Article ID Journal Published Year Pages File Type
1549056 Progress in Natural Science: Materials International 2008 6 Pages PDF
Abstract

Magnetic fluid-assisted finishing has been verified both theoretically and experimentally as an effective fabrication technology for optical mirrors and lenses. The purpose of this paper is to introduce a novel design of polishing tool and demonstrate the possible applications of this technology. The work includes studying the viscosity of the magnetic suspensions of micrometer-sized Carbonyl iron particles under the influence of a magnetic field. Both the cases of magnetizable suspension with and without abrasive cerium oxide particles are studied for their ensuing polishing effectiveness. Determination of material removal function is conducted using a Wyko Nat1100 interferometer. Experiments to reduce surface roughness with the proposed tool are also performed using a K9 mirror as the work-piece. Results show that the surface accuracy is improved over three times to less than 0.5 nm after two cycles of polishing.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,