Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1549305 | Solar Energy | 2016 | 12 Pages |
•Wind power and solar irradiance forecasting techniques are tested on two wide areas.•Principal Component Analysis (PCA) allows reducing the dimension of the datasets.•PCA combined with postprocessing reduces computational costs and forecast errors.
This work explores a Principal Component Analysis (PCA) in combination with two post-processing techniques for the prediction of wind power produced over Sicily, and of solar irradiance measured by Oklahoma Mesonet measurements’ network. For wind power, the study is conducted over a 2-year long period, with hourly data of the aggregated wind power output of the Sicily island. The 0–72 h wind predictions are generated with the limited-area Regional Atmospheric Modeling System (RAMS), with boundary conditions provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) deterministic forecast. For solar irradiance, we consider daily data of the aggregated solar radiation energy output (based on the Kaggle competition dataset) over an 8-year long period. Numerical Weather Prediction data for the contest come from the National Oceanic & Atmospheric Administration – Earth System Research Laboratory (NOAA/ESRL) Global Ensemble Forecast System (GEFS) Reforecast Version 2. The PCA is applied to reduce the datasets dimension. A Neural Network (NN) and an Analog Ensemble (AnEn) post-processing are then applied on the PCA output to obtain the final forecasts. The study shows that combining PCA with these post-processing techniques leads to better results when compared to the implementation without the PCA reduction.