Article ID Journal Published Year Pages File Type
1549351 Solar Energy 2016 10 Pages PDF
Abstract
Many technical solutions are currently available; however, in this study, the analysis is limited to liquid-cooled nonconcentrating PV-T collectors where c-Si cells are used. In particular, the experimental results of two pilot plants, based on patented panels, named TESPI - thermal electric solar panel integration, are presented. The main advantage of these modules is that they represent a retrofit of existing PV plants. In fact, they can be installed on top of conventional PV modules as they are based on the infrared filtering effect of water on solar radiation. A standard test for hybrid PV-T systems for developing new solutions and measuring their performance was designed. In order to improve the design of modules and check their behavior in typical domestic hot water systems, two different PV-T solutions, but with identical PV modules, were analyzed without the heat transfer system. The prototypes are made of two systems (PV and PV-T) installed on two Italian sites, Enna (Sicily) and Pisa (Tuscany), characterized by typical Mediterranean climate. In this study, PV-T systems were analyzed at a PV string level. Different operating conditions were tested and electrical and thermal critical operating conditions were detected.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,