Article ID Journal Published Year Pages File Type
1551497 Solar Energy 2009 9 Pages PDF
Abstract

This paper presents the analysis of low-temperature solar Rankine cycles for power generation using zeotropic mixtures. Three typical mass fractions 0.9/0.1 (Ma) 0.65/0.35 (Mb), 0.45/0.55 (Mc) of R245fa/R152a are chosen. In the proposed temperature range from 25 °C to 85 °C, the three zeotropic mixtures are investigated as the working fluids of the low-temperature solar Rankine cycle. Because there is an obvious temperature glide during phase change for zeotropic mixtures, an internal heat exchanger (IHE) is introduced to the Rankine cycle. Investigation shows that different from the pure fluids, among the proposed zeotropic mixtures, the isentropic working fluid Mb possesses the lowest Rankine cycle efficiency. For zeotropic mixtures a significant increase of thermal efficiencies can be gained when superheating is combined with IHE. It is also indicated that utilizing zeotropic mixtures can extend the range of choosing working fluids for low-temperature solar Rankine cycles.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,