Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1551597 | Solar Energy | 2009 | 6 Pages |
Some basic concepts related to variable band-gap absorbing semiconductors in solar cell structures, such as the associated quasi-electric field, will be discussed. The effects of this quasi-electric field upon the minority carrier drift-diffusion length and the back surface recombination velocity may induce a larger generated carrier collection at the junction with the corresponding increase of the illumination current density. It will also be shown that an additional improvement of the open-circuit voltage is possible when the band-gap is reduced within the space charge region so that the dark saturation current density is reduced there. Our estimation is that in the case of a solar cell where the band-gap is changed about 0.5 eV within the space charge region, an increase of the open-circuit voltage around 115 mV will be observed with respect to the single minimum band-gap absorbing material case. A similar band-gap variation in the bulk of the material will cause an increase of the minority carrier drift-diffusion length by a factor of 10 with respect to the single band-gap material. Therefore, based on these physical concepts, two possible structures with variable band-gap layers are proposed in order to have higher efficiencies than for cells without any band-gap grading. It will be shown that these concepts can be applied to II–VI, III–V chalcopyrite and even amorphous semiconductor solar cells.